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Stability of negative-image equilibria in spike-timing-dependent plasticity
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We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by
spike-timing-dependent plasticity~STDP!. The model architecture closely follows the anatomy and physiology
of the electrosensory lateral line lobe~ELL! of mormyrid electric fish. The ELL uses a spike-timing-dependent
learning rule to form a negative image of the reafferent signal from the fish’s own electric discharge, thus
improving detectability of external electric fields. We derive sufficient conditions for existence of the negative
image and necessary and sufficient conditions for stability, for arbitrary postsynaptic potential functions and
arbitrary learning rules. This significantly generalizes earlier investigations. We then apply the general result to
several examples of biological interest, including a class of learning rules consistent with the rule observed
experimentally in the mormyrid ELL.
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I. INTRODUCTION

Synaptic plasticity is thought to be a fundamental mec
nism for learning and adaptation in biological neural n
works @1#. The activity dependence of synaptic plasticity h
been observed experimentally@2,3#, but the precise nature o
that dependence and its functional or computational con
quences are still largely unknown. The purpose of the pre
paper is to derive clear functional consequences from s
cific forms of activity-dependent synaptic plasticity.

Current models of synaptic plasticity are of two ma
types: rate-based and timing-based. In rate-based mo
changes in synaptic weight depend on the mean spike ra
presynaptic and postsynaptic cells, usually via correlati
@4,5#. Since mean spike rates are averages over time w
dows containing many spikes, the timing of individual spik
is unimportant in rate-based models. Recent experime
studies@6–8# have shown that in some systems the prec
timing of individual spikes can have a pronounced effect
synaptic plasticity. Models of suchspike-timing-dependen
plasticity ~STDP! @9# calculate changes in synaptic weigh
by combining the effect of all pairs of presynaptic a
postsynaptic spikes@10–15#, where the effect of each pair i
a function of the time between them~called the spike-timing-
dependent learning rule!.

One system in which STDP has been observed exp
mentally, and where its functional role is understood, is
electrosensory lateral line lobe~ELL! of mormyrid electric
fish @7#. The mormyrid identifies objects in its environme
by emitting a stereotyped electrical discharge and detec
the perturbations to the resulting electrical field at the s
surface due to external objects. To cancel the predicta
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sensory input due to its own discharge, the mormyrid se
to the ELL a sequence of time-delayed, time-locked cop
of the motor command which initiates the discharge@Ref.
@16#, citation~a!#. In the ELL these signals innervate mediu
ganglion~MG! cells through plastic synapses. The MG ce
also receive primary afferent input from electroreceptors
the skin. The plastic synapses onto MG cells enable form
tion and maintenance of a negative image@17# of the primary
afferent signal, via a spike-timing-dependent learning ru
This negative image effectively nulls out the sensory eff
of the fish’s own discharge, thus improving detectability
perturbations due to external objects. Plasticity allows
negative image to be maintained despite changes in the
cise form of the discharge that result from fluctuations
water conductivity or from changes in body shape over
fish’s life span.

To be behaviorally useful to the fish, the set of synap
weights which create the negative image must be a st
equilibrium for the synaptic dynamics induced by the spik
timing-dependent learning rule. Roberts@18# explored stabil-
ity of such equilibria under restrictive conditions on the for
of the learning rule and of the postsynaptic potential fun
tion. The approach developed here allows us to derive a
lytical criteria for both existence and stability of negativ
image equilibria for systems witharbitrary spike-timing-
dependent learning rules and arbitrary postsynaptic pote
functions.

The structure of the paper is as follows. In Sec. II w
describe the architectural and dynamical features of
model, and in Sec. III we derive dynamical equations for
synaptic weights. In Sec. IV we derive conditions for ex
tence of negative image equilibria, and in Sec. V conditio
for stability of such equilibria. In Sec. VI we discuss a num
ber of general properties and consequences of the exist
and stability criteria, and the role played in those criteria
the various components of the model. In Sec. VII we exp
itly evaluate the general stability criteria for several clas
©2003 The American Physical Society23-1
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WILLIAMS, ROBERTS, AND LEEN PHYSICAL REVIEW E68, 021923 ~2003!
of learning rule and postsynaptic potential function, and
ply these results to the learning rule observed experimen
in the mormyrid ELL.

II. FRAMEWORK

The model consists of a single postsynaptic cell~repre-
senting an MG cell! driven by the following inputs: an arra
of time-locked presynaptic cells~representing the efferenc
copy of the motor command!, a repeated external input~rep-
resenting the postsynaptic potential in the MG cell due
primary afferents!, and other unspecified inputs collective
modeled as noise@19–21# ~Fig. 1!. This architecture is base
on the mormyrid ELL, but is general enough to capture
dynamics of other neural systems hypothesized to have
array of time-delayed, time-locked inputs@22,23#.

For the spiking dynamics of the postsynaptic neuron
use the spike response~SR! model@24,25#, without refracto-
riness. In such models the effect of presynaptic spikes on
postsynaptic cell is represented by a postsynaptic pote
function ~PSP!, which is the change in the postsynap
membrane potential due to the presynaptic spike, as a f
tion of time. Spike response models have been shown
include leaky integrate-and-fire~LIF! models as a specia
case@26#; so while the formalism of SR models may appe
more abstract than LIF, in fact there is no loss of biophysi
realism in using SR. We do so here because the SR form
ism is more convenient than LIF for the derivation of an
lytical results.

Each presynaptic celli spikes exactly once at a fixed tim
within each sweep of the repeated external input, causin
corresponding PSP in the postsynaptic cell.

The total membrane potential in the postsynaptic cel
the sum of these PSPs, weighted by synaptic effica
~weights! wi , and the two external inputs. This membra
potential induces the postsynaptic cell to spike at a cer
~noisy! rate. Each presynaptic spike causes a constant~non-

FIG. 1. Schematic of the architecture. The postsynaptic cell
ceives inputs fromN presynaptic neurons, a repeated external in
f(x), and unspecified noisy inputs. Presynaptic neuroni spikes at
time xi in each period off, and has synaptic weightwi onto the
postsynaptic cell.
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associative! change in the weightwi , and each postsynapti
and presynaptic spike pair causes a change inwi according to
a spike-timing-dependent learning rule, namely, a function
the time difference between the postsynaptic and presyna
spikes~associative learning!.

The repeated external input has the form of a brief ster
typed pulse with variable interpulse interval. The tim
locked inputs occur for approximately the duration of t
pulse, and are absent during interpulse intervals@7#. Hence
the events which induce plasticity are restricted appro
mately to the duration of the pulses, provided the width
the learning rule is much less than the width of a pulse~a
requirement we will impose below!. For the purpose of cal-
culating the weight changes due to plasticity we may the
fore omit the interpulse intervals, and replace the repea
external input with aperiodic input obtained by concatena
ing the stereotyped pulses.

Denoting the resulting period~pulse width! by T, we then
use two time variables:xP@0,T) for the time within each
repetition of the external input, andt5nT, nPZ for the time
of initiation of each period@20,21,27#. General dynamical
quantities will be functions of the pair (x,t). Let xi be the
time within each period when presynaptic celli spikes, and
wi(x,t) its corresponding weight. Since presynaptic spik
are time locked to the external input,xi is independent oft.
Let E(s) be the PSP evoked by neuroni at time s after a
spike. We assumeE is causal:E(s)50 for s,0. Leta be the
nonassociative weight change due to a presynaptic spike,
L(s) the associative weight change due to a postsyna
spike times after a presynaptic spike. Letf(x) be the peri-
odic external input, andU(x,t) the total postsynaptic poten
tial due to the non-noisy inputs. We assume that for eact,
themeaninstantaneous postsynaptic spike rate density~in x)
is given by f „U(x,t)… for some positive and strictly increas
ing function f.1 The functionf can be thought of as the ef
fective gain of the postsynaptic cell in the presence of
noisy inputs. High or low noise correspond to anf with small
or large maximum slope, respectively. No attempt is made
include a refractory period for postsynaptic spikes; and
will assume that the period off is greater than the refractor
period of the presynaptic neurons, so that refractoriness
the presynaptic side is irrelevant.

Changes in weights will be implemented as discrete st
with no internal time course. In the present model there
two natural choices for the time at which weight chang
occur: asynchronously~instantaneously, whenever a presy
aptic or postsynaptic spike occurs! or synchronously~once
per sweep of the repeated external input, updating
weights simultaneously!. We adopt the latter strategy, upda
ing weights atx50 for eacht5nT,nPZ. The value ofwi in

1This simplified treatment of the noise is justifiedpost hocby the
calculations to follow. Since we will assume that weight chang
due to different spikes or spike pairs add linearly, we will find th
the mean synaptic weight dynamics will depend only on the m
postsynaptic spike rate density, and not on any higher mome
Even the functional form off will turn out to be irrelevant to sta-
bility, provided it is strictly increasing.
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FIG. 2. Changes in weight due to pairing of presynaptic and postsynaptic spikes.~a! Pairing of a postsynaptic spike at time (x,t) and
presynaptic spike by neuroni at time (xi ,t) causes a changeL(x2xi) in weightwi . ~b! For x within tL of a period edge, we must includ
pairing with presynaptic spikes in the neighboring period. Pairing of a postsynaptic spike at time (x,t) and presynaptic spike by neuroni at
time (xi ,t1T) causes a changeL(x2xi2T) in weight wi . Arbitrary units.
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the period beginning at (0,t) is then independent ofx, and
will be denotedwi(t). For synchronous updating to be
reasonable approximation, we must assume that we
changes per cycle are small relative to the weights th
selves~slow learning rate!. Changes in weights due to diffe
ent spikes or spike pairs are assumed to add linearly.

In biological systems, synaptic weights have bound
magnitude and do not change sign. Since the present pap
focused solely on the dynamics near equilibria, we imp
no boundary conditions on the model. The results still ap
to the biological case provided the weight equilibria are
the region enclosed by biological bounds.

We assume homogeneous parameters: the scalara and the
functionsE, L are the same for all presynaptic neurons, a
the timesxi are regularly spaced,xi5 id, i 50,1, . . . ,N21
for somed.0, N5T/d@1.

For simplicity in the derivation of the weight dynamics,
will be convenient to assume thatE(s),L(s) are zero or neg-
ligible for usu.tE ,tL , respectively, withtE ,tL!T. We will
also require the learning rate to be slow:T!tw , wheretw is
the time scale on which weights undergo significant relat
change. For the existence of approximate negative im
states we will need the spacing of presynaptic spike tim
much smaller than the widths ofE andL: d!tE ,tL . These
time-scale assumptions can be summarized as

d!~tE ,tL!!T!tw .

Typical values for the mormyrid ELL ared,1 ms @Ref.
@16#, citation ~b!#, tE;20 ms @7#, tL;40 ms @7#, T
;80 ms@Ref. @16#, citation ~b!#, andtw;102T @7#.

III. WEIGHT DYNAMICS

To obtain the mean weight dynamics, we compute
mean value ofwi(t1T)2wi(t). The nonassociative chang
in wi(t) due to the single presynaptic spike at (xi ,t) is a.
For the associative change due to presynaptic and pos
aptic spike pairs, consider the effect of a single postsyna
spike at (x,t). The pairing of this spike with the presynapt
spike at (xi ,t) causes a changeL(x2xi) in wi . To properly
handle edge effects, we also include the pairing with pres
aptic spikes at (xi ,t2T) and (xi ,t1T), for a total change of

L~x2xi2T!1L~x2xi !1L~x2xi1T!. ~1!
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For typical biological applications, wheretL!T, at most one
of the above terms is non-negligible, but all must be includ
to handle cases wherex2xi is within tL of T or 2T ~Fig. 2!.
In addition,tL!T allows us to approximate Eq.~1! by

(
n52`

`

L~x2xi2nT!5L̊~x2xi !, ~2!

where L̊(s)5(n52`
` L(s2nT) is the periodization ofL

with periodT.
Quantity ~2! is the change inwi(t) due to a single

postsynaptic spike at (x,t). Postsynaptic spikes betweent
and t1T occur at a mean rate densityf „U(x,t)…; hence the
mean total change due to all postsynaptic spikes betwet
and t1T is

E
0

T

dx f„U~x,t !…L̊~x2xi !.

The mean total change inwi(t) due to both nonassociativ
and associative learning is therefore

^Dwi~ t !&5a1E
0

T

dx f„U~x,t !…L̊~x2xi !. ~3!

We now compute the postsynaptic potentialU(x,t). The
contribution toU(x,t) due to the presynaptic spike by ne
ron i at (xi ,t2nT) is wi(t1nT)E(x2xi1nT). For tE!T
this quantity is non-negligible for at most one value ofn,
eithern50 ~current period! or n521 ~previous period!. But
to properly handle edge effects~Fig. 3! we include both, for
a total contribution of

wi~ t2T!E~x2xi2T!1wi~ t !E~x2xi !. ~4!

We assume that the learning rate is sufficiently slow so t
we may approximate quantity~4! by

wi~ t !@E~x2xi2T!1E~x2xi !#. ~5!

Finally, tE!T allows us to approximate quantity~5! by

wi~ t ! (
n52`

`

E~x2xi2nT!5wi~ t !E̊~x2xi !, ~6!
3-3
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FIG. 3. Postsynaptic potential due to presynaptic spikes.~a! Potential at time (x,t) due to presynaptic spike by neuroni at time (xi ,t) is
wi(t)E(x2xi). ~b! For x within tE of 0, we must include the potential due to presynaptic spikes in the preceding period. The pote
time (x,t) due to the presynaptic spike by neuroni at time (xi ,t2T) is wi(t2T)E(x2xi1T). Arbitrary units.
io
l i

e

ch

th

ve
the

-

tate

t
-

ete

-

po
whereE̊(s)5(n52`
` E(s2nT) is the periodization ofE with

periodT.
Quantity ~6! is the contribution toU(x,t) from neuroni.

The total postsynaptic potential is the summed contribut
from all presynaptic neurons, plus the repeated externa
put:

U~x,t !5f~x!1(
j 51

N

wj~ t !E̊~x2xj !. ~7!

Equations~3! and~7! define the mean weight dynamics. Th

common periodicity of the functionsE̊, L̊, andf is an im-
portant feature, allowing the systematic use of Fourier te
niques.

IV. THE NEGATIVE IMAGE

A. Existence of negative image states

A set of weights$wi% for which the total postsynaptic
potentialU(x,t) is approximately constant inx will be re-
ferred to as anapproximate negative imagestate. For such a
state the contribution to the postsynaptic potential due to
presynaptic cells alone is, up to an additive constantU0, an
approximate negative image~Fig. 4! of the external inputf:

(
j 51

N

wj E̊~x2xj !.U02f~x!. ~8!

FIG. 4. An approximate negative image. If the postsynaptic

tential U(x,t)5f(x)1( j 51
N wj (t) E̊(x2xj ) is approximately some

constantU0, then the potential( j 51
N wj (t) E̊(x2xj ) due to presyn-

aptic spikes alone is approximatelyU02f(x). Arbitrary units.
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In the following, we first show that approximate negati
image states exist provided a certain condition holds on

Fourier coefficients of the postsynaptic potential functionE̊
and the repeated external inputf, and provided the presyn
aptic spike time spacingd is sufficiently small. We then

show that for a particular value ofU0 ~depending ona, L̊,
and f ) there exists an approximate negative image s
which is also an equilibrium~fixed point! for the weight
dynamics.

For genericE̊ and f, Eq. ~8! cannot be made an exac
equality for all x, because that would require solving infi
nitely many independent linear equations~one for eachx) in
only finitely many unknowns~the N weights$wj%). But if
we replace the discrete set of weightswj with a continuum
weight densityW, then the analog of Eq.~8! can, under
certain conditions, be made exact for allx. Given such a
density, we then recover the biological case of discr
weights $wj% for which Eq. ~8! is approximately true by
defining the set$wj% to be a discrete approximation toW.

Let W(y) be a weight density, withW(y)dy being the
total weight for presynaptic spikes occurring betweeny and
y1dy, for yP@0,T). The continuum analog of Eq.~8!, with
exact equality for allx, is

E
0

T

dy_W~y!E̊~x2y!5U02f~x!. ~9!

To solve this equation forW we take the Fourier decompo
sition. Let Wn5(1/T)*0

Tdy eiknyW(y) for kn52pn/T, n
PZ be the Fourier coefficients forW, and letEn , fn be the

coefficients forE̊ andf. Then Eq.~9! becomes

U02 (
n52`

`

fne2 iknx

5E
0

T

dyS (
n52`

`

Wne2 iknyD S (
m52`

`

Eme2 ikm(x2y)D
5 (

n52`

`

(
m52`

`

WnEme2 ikmxE
0

T

dyei (km2kn)y

5T (
n52`

`

WnEne2 iknx.

-

3-4
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HenceW satisfies Eq.~9! if and only if

W05
U02f0

TE0
,

Wn5
2fn

TEn
, nÞ0. ~10!

Given such aW, we construct approximate negative ima
states with discrete weights as follows. Defineg(x) to be the
deviation from a negative image:

g~x!5f~x!2U02(
j 51

N

wj E̊~x2xj !. ~11!

Then$wj% is an approximate negative image state ifg(x) is
small relative toU02f(x), for all x. Consider the set o
weights defined by

wj5dW~xj !,

where d is the spacing of thexj . These weights can b
thought of as a discrete approximation to the weight den
W(y). Substituting into Eq.~11! and using Eq.~9! gives

g~x!5(
j 51

N

dW~xj !E̊~x2xj !2E
0

T

dy_W~y!E̊~x2y!.

This is the difference between a Riemann sum and the i
gral it approximates. The error theorem for Riemann su
then gives an upper bound forg:

ug~x!u<d
T

2
max

y
U d

dy
@W~y!E̊~x2y!#U. ~12!

Hence, forug(x)u to be small, we needW(y) E̊(x2y) to
be differentiable iny, hence we needW(y) to be differen-
tiable iny. A theorem of Fourier series@28# says thatW(y) is
differentiable if(n52`

` unWnu,`. By Eq. ~10! this places a

constraint on the Fourier coefficients ofE̊ andf:

(
n52`

` Unfn

En
U,`. ~13!

This inequality requiresfn to go to zero asn→6` more
rapidly thanEn /n2. In particular, the high frequency~large
unu) spectral content off must be less than the high fre

quency content ofE̊. Intuitively, in order for the convolution

of E̊ with a smooth weight densityW to be able to ‘‘match’’
the high frequency components of2f, the high frequency
content off cannot be too large.

If Eq. ~13! is satisfied, andd is sufficiently small, then
from Eq. ~12! the deviationg(x) from an exact negative
image is small, hence approximate negative image states
ist.
02192
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B. Existence of negative image equilibria

We now show that for a particularU0 there exists an
approximate negative image state that is an equilibrium
the weight dynamics. From Eq.~3!, a weight state$wj% is an

equilibrium if U(x)5f(x)1( j 51
N wj E̊(x2xj ) satisfies

a1E
0

T

dx f„U~x!…L̊~x2xi !50 for all i . ~14!

This is a system ofN equations in theN unknowns$wj%, but
they are nonlinear equations for nonlinearf. In general such
equations need not have solutions, but for approximate ne
tive image states the nonlinearity is in some sense ‘‘sma
and this will allow us to show that solutions exist providedd
is sufficiently small.

For an approximate negative image state we haveU(x)
5U01g(x) with g(x)!U0, and we wish thisU(x) to sat-
isfy Eq. ~14!. First defineU0 so that Eq.~14! would be
satisfied ifg(x) were identically zero:

a1E
0

T

dx f~U0!L̊~x2xi !50 for all i . ~15!

This requires

f ~U0!5
2a

E
0

T

dx L̊~x2xi !

for all i

5
2a

E
0

T

dx L̊~x!

, ~16!

where the independence ofi follows from the periodicity of

L̊. Hence, our desiredU0 exists and is given by

U05 f 21S 2a

E
0

T

dx L̊~x!D , ~17!

provideda, L̊, andf satisfy

min
u

f ~u!,
2a

E
0

T

dx L̊~x!

,max
u

f ~u!. ~18!

From Eq. ~15!, U(x)5U01g(x) satisfies Eq.~14! if and
only if

E
0

T

dx @ f ~U01g~x!!2 f ~U0!#L̊~x2xi !50 for all i .

~19!

For brevity let h(x)5 f „U01g(x)…2 f (U0) and Li(x)

5L̊(x2xi). Then Eq.~19! can be written as
3-5
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WILLIAMS, ROBERTS, AND LEEN PHYSICAL REVIEW E68, 021923 ~2003!
^h,Li&50 for all i , ~20!

where^•,•& is the inner product defined by

^ f 1 , f 2&5E
0

T

dx f1~x! f 2~x!, ~21!

for f 1 , f 2 in the spaceX of smooth functions on the interva
@0,T#.

Let H be the set of functionsh corresponding to all pos
sible values of the weights$wj%:

H5H h:h~x!5 f S f~x!2(
j 51

N

wj E̊~x2xj !D
2 f ~U0!,wjPR, j 51, . . . ,NJ ,

where we have usedU01g(x)5f(x)2( j 51
N wj E̊(x2xj )

from Eq. ~11!. Let S be the subspace ofX consisting of all
linear combinations of the$Li%, and S' be the ~infinite-
dimensional! subspace ofX orthogonal toS in the inner
product defined by Eq.~21!. Then there exists anh satisfying
Eq. ~20! if and only if H andS' have nonempty intersection

HùS'ÞB. ~22!

We claim that condition~22! holds if d is sufficiently small.
If d is small, then bound~12! implies thatg(x) is small for
all x. In that caseh(x)5 f „U01g(x)…2 f (U0) is approxi-
mately its linearization ing, which we denote byh0(x):

h~x!.h0~x!5 f 8~U0!g~x!

5 f 8~U0!Ff~x!2U01(
j 51

N

wj E̊~x2xj !G .

Let H0 be the set of suchh0 corresponding to all possibl
values of the weights$wj%:

H05H h0 :h0~x!5 f 8~U0!Ff~x!2U01(
j 51

N

wj E̊~x2xj !G ,

wjPR, j 51, . . . ,NJ ,

Then the condition thatH0 have nonempty intersection wit
S',

H0ùS'ÞB, ~23!

is equivalent to existence ofh0PH0 such that^h0 ,Li&50
for all i. This is equivalent to the linearization of system~19!:

E
0

T

dx f8~U0!Ff~x!2U01(
j 51

N

wj E̊~x2xj !G L̊~x2xi !50

for all i ,

which can be rewritten as
02192
(
j 51

N

Qi j wj5g, ~24!

whereg5*0
Tdx f8(U0)@f(x)2U0# and

Qi j 5 f 8~U0!E
0

T

dx E̊~x2xj !L̊~x2xi !. ~25!

This is a system ofN linear inhomogeneous equations in th
N unknowns$wj%, which has a solution provided the coeffi
cient matrix Q is invertible. The eigenvalues ofQ will be
calculated in the following section, and for genericE andL
all eigenvalues are nonzero. HenceQ is generically invert-
ible, so that condition~23! holds. Furthermore, the intersec
tion of H0 with S' is generically transversal~not tangent!.

Now as d→0, H→H0 in the metric induced by inne
product ~21!. By the openness of transversal intersecti
~infinite-dimensional version@29#!, any sufficiently small
perturbation ofH0 also intersectsS'. Hence for sufficiently
smalld, H intersectsS' ~Fig. 5!, henceh satisfying Eq.~20!
exists. The corresponding weight state$wj% is an approxi-
mate negative image equilibrium.

V. STABILITY CRITERION

We now derive a necessary and sufficient condition
the mean stability of approximate negative image equilib
by examining the linearized weight dynamics around su
states. Let$ŵj% be an approximate negative image equili
rium satisfying Eq.~11! with

U~x!5f~x!1(
j 51

N

ŵj E̊~x2xj !5U01ĝ~x!. ~26!

Solving for f(x) in Eq. ~26! and substituting into Eq.~7!
yields

U~x,t !5U01ĝ~x!1(
j 51

N

v j~ t !E̊~x2xj !,

FIG. 5. Transversal intersection theorem. IfH0 has transversa
intersection withS' andH is sufficiently close toH0, thenH inter-
sectsS'.
3-6
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wherev j (t)5wj (t)2ŵj is the deviation of weightj from its
equilibrium value andĝ(x) is the deviation from a negativ
image in the equilibrium state$ŵj%. To first order inv j we
then have

f „U~x,t !…. f „U01ĝ~x!…1 f 8„U01ĝ~x!…

3(
j 51

N

v j~ t !E̊~x2xj !. ~27!

Substituting Eq. ~27! into Eq. ~3! and using nwi(t)
5Dv i(t) yields

^Dv i~ t !&5a1E
0

T

dx f„U01ĝ~x!…L̊~x2xi !

1 f 8„U01ĝ~x!…(
j 51

N

v j~ t !E̊~x2xj !L̊~x2xi !.

From the equilibrium condition, Eqs.~14! and~26!, the term
in Eq. ~28! of zeroth order inv j vanishes. Hence

^Dv i~ t !&.(
j 51

N

Pi j v j~ t !,

where

Pi j 5E
0

T

dx f8„U01ĝ~x!…E̊~x2xj !L̊~x2xi !.

Now assumed is sufficiently small so that

ĝ~x!!
f 8~U0!

f 9~U0!
for all x.

Then f 8„U01ĝ(x)…. f 8(U0) for all x, so that Pi j .Qi j ,
whereQ is the matrix defined in Eq.~25!, and we obtain

^Dv i~ t !&.(
j 51

N

Qi j v j~ t !.

Taking the mean on both sides and using^Dv i(t)&
5D^v i(t)& yields

D^v i~ t !&.(
j 51

N

Qi j ^v i~ t !&. ~28!

Equation~28! gives the linearized dynamics for^v i(t)& near
^v i(t)&50, hence for̂ wi(t)& near the approximate negativ
image equilibrium$ŵj%.

The system, Eq.~28!, is stable if and only if all eigenval-

ues ofQ1I have norm less than 1. Due to periodicity ofE̊,L̊
and regular spacing of the$xi%, the matrixQ has the property
that each of its rows equals the row above it shifted one e
to the right~and wrapped around at the edges!. Such matrices
02192
ry

are calledcirculant @30# and their eigenvectors and eigenva
ues are easily found, as follows. Ifu is the vector with com-
ponentsui5eikxi, then

~Qu! i5(
j 51

N

Qi j uj5(
j 51

N

eikxjE
0

T

dx E̊~x2xj !L̊~x2xi !,

so that

~Qu! i

ui
5(

j 51

N

eik(xj 2xi )E
0

T

dx E̊~x2xj !L̊~x2xi !. ~29!

By periodicity of E̊ and L̊, the integral in the above expres
sion is a function ofxj2xi moduloT. The factoreik(xj 2xi ) is
also a function ofxj2xi moduloT providedeikT51. Now if
the $xi% are regularly spaced, the sum overj of a function of
xj2xi modulo T is independent ofi. In that case Eq.~29!
would imply that (Qu) i /ui is independent ofi, henceu is an
eigenvector ofQ, with eigenvalue equal to the right-han
side of Eq.~29!. We get a complete set of such eigenvecto
by takingN values ofk such thateikT51 and the functions
eikxi are independent functions ofi. Here we choose

kn5
2pn

T
, n50,1, . . . ,N21.

The corresponding eigevalues ofQ are

ln5(
j 51

N

eikn(xj 2xi )E
0

T

dx E̊~x2xj !L̊~x2xi !.

Letting zj5xj2xi , making the change of variablesy5xj

2x, and using periodicity ofE̊, L̊ gives

ln5(
j 51

N

eiknzjE
0

T

dy E̊~2y!L̊~zj2y!5(
j 51

N

eiknxjL̊* T E̊˜~xj !,

where *T is convolution on the interval@0,T#, ˜ is horizontal

reflection@ E̊˜(y)5 E̊(2y)#, and since$zj%5$xj% we have re-
placedzj by xj in the sum.

The stability condition isu11lnu,1 for all n:

Stability:U11(
j 51

N

eiknxjL̊* T E̊˜~xj !U,1,

kn5
2pn

T
, n50,1, . . . ,N21. ~30!

In the biological setting two limiting regimes are of spec

interest: slow learning (L̊ small! and dense spacing (d
small!.

If L̊ is small, then so are the eigenvalues ofQ. If ln
5an1 ibn with an ,bn real, we have

u11lnu25~11an!22bn
25112an1~an

22bn
2!.
3-7
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If an andbn are sufficiently small, this quantity is less than

if and only if an,0. Hence for sufficiently smallL̊, all
eigenvalues ofQ1I have norm less than 1 if and only if a
eigenvalues ofQ have negative real part.2 The stability con-
dition then becomes Reln,0 for all n. Hence in the slow
learning limit, Eq.~30! becomes

Slow learning: Re(
j 51

N

eiknxjL̊* T E̊˜~xj !,0,

n50,1, . . . ,N21. ~31!

The dense spacing limit (d→0) is the continuum limit in
xi . The discrete weight densitywi /T is replaced by a con
tinuum weight densityW(x), sums overxj are replaced by
integrals overx, andN→`. This yields

ln5E
0

T

dx eiknxL̊* T E̊˜~x!, n50,1, . . . .

Henceln is just thenth Fourier coefficient ofL̊* T E̊˜. The
Fourier convolution theorem then gives

ln5L̊nE̊
˜

n5L̊nE̊
¯

n,

whereE̊n ,E̊
˜

n ,L̊n are thenth Fourier coefficients ofE̊,E̊
˜

,L̊,
respectively, andz̄ is the complex conjugate ofz. Substitut-
ing into the stability conditionu11lnu,1 for all n gives the
dense spacing limit of Eq.~30!:

Dense spacing: u11L̊nE̊
¯

nu,1, n50,1, . . . . ~32!

Finally, with both slow learning and dense spacing the s
bility condition becomes

Slow learning, dense spacing: Re@ L̊nE̊
¯

n#,0,

n50,1, . . . . ~33!

A further simplification follows in the long period limit
tE ,tL!T. Holding tE ,tL constant and takingT→`, the

Fourier series ofE̊,L̊ in Eq. ~33! approach Fourier transform
of E,L, respectively. The stability condition then become

Slow learning, dense spacing, long period:

Re†F@L#~k!F@E#̄~k!‡,0, kP~2`,`!. ~34!

For the calculation of examples we will work in the slo
learning, dense spacing, long period limit, which is the lim
of primary biological interest in the mormyrid ELL.

2The slow learning limit can thus be thought of as the continu
time ~continuoust) limit. All eigenvalues ofQ having negative rea
part are equivalent to stability of the systemd^v&/dt5Q^v& and
hence ofT d^v&/dt5Q^v&, which is the continuous time version o
Eq. ~28!.
02192
-

t

VI. GENERAL REMARKS

The roles of nonassociative and associative learni.
Both nonassociative and associative learnings (a andL, re-
spectively! play a role in whether approximate negative im
age equilibria exist, via Eq.~18!. They are also involved in
determining the location of such equilibria, via Eq.~14!. The
interpretation of Eq.~14! is that at equilibrium, the mean
change due to nonassociative learning (a) must be precisely
opposite to the mean change due to associative learning~the
L term!. If the postsynaptic spike rate densityf is bounded,
this places a relative magnitude constraint ona and L,
namely, Eq.~18!. If this constraint is violated then the mea
changes due to associative and nonassociative learning
unable to balance one another, and no negative image e
librium is possible.

By contrast, only associative learning plays a role in t
stability of approximate negative image equilibria, via E
~30!. The irrelevance of nonassociative learning for stabil
has an intuitive interpretation: near an approximate nega
image equilibrium, the mean nonassociative change is c
celed by the mean associative change due the cons
postsynaptic potentialU0 around whichU(x,t) fluctuates.
Only the deviations ofU(x,t) from U0 cause a net change i
the weights, and these changes are purely associative@due to
postsynaptic spikes generated byU(x,t)]. Alternatively,
nonassociative learning can be analogized to a constan
ternally applied force in a physical system. Such a fo
changes the location of equilibria, but has no effect on
dynamics around equilibria.

The role of the repeated input. For a given postsynaptic
potential responseE, the repeated inputf plays a role in the
existence of approximate negative image states via Eq.~13!:
f cannot have too much high frequency content relative tE
for such states to exist.

Assuming f is such that approximate negative ima
states exist, it then plays an important role in determining
weight configurations in such states, and in particular, in
proximate negative image equilibria, via Eq.~8!.

But f plays no role in the stability of the resulting neg
tive image equilibrium. This is intuitively reasonable, sin
in approximate negative image states,f is ‘‘nulled out’’ by
the summed postsynaptic potentials due to time-locked
esynaptic spikes.

The role of noise.The functional form of the mean
postsynaptic spike ratef affects the existence and location
the negative image equilibrium via Eqs.~18! and ~14!.

But providedf is strictly increasing~so thatf 8 is positive!,
f has no effect on the stability of the equilibrium. Hence t
classification of learning rules as~mean! stable or unstable is
except for this mild monotonicity requirement, insensitive
the fine structure of the noise. This is a post hoc justificat
for not modeling the noise in more detail.

Canonically stable learning rule: L52E. In the dense
spacing and slow learning limit, supposeL52E. The stabil-
ity condition ~33! is then

uE̊nu2.0 for all n, ~35!

s

3-8
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or in other words,E̊nÞ0 for all n. Since this is true for
genericE, the learning ruleL52E is generically stable.

Area sign condition. In the dense spacing and slow lear

ing limit, considern50 in Eq. ~33!. SinceL̊0 and E̊
¯

05E̊0

are just the areas under the functionsL̊ and E̊, Eq. ~33! says
that for stability, these areas must be opposite in sign. If t
are the same sign, then the negative image is unstable
particular, ifE andL are both nonnegative, the negative im
age is unstable. Hence, ifE is an excitatory PSP andL is any
pure potentiating learning rule, the negative image is
stable. Similarly, inhibitory PSPs with purely depressi
learning rules are unstable.

Symmetric and antisymmetric learning rules. In the dense
spacing, slow learning, long period limit, there is a no
empty, positive measure set of postsynaptic response f
tions for which purely symmetric or purely antisymmetr
learning rules are generically unstable. This follows from
fact that the Fourier transforms of symmetric and antisy
metric functions are pure real and pure imaginary, resp
tively.

Suppose the real part of the Fourier transform ofE has a
zero:

Re†F@E#~k0!‡50 for some k0 . ~36!

Then, generically, Re†F@E#(k)‡ changes sign atk0. Suppose
L is symmetric, so thatF@L#(k) is pure real. Then

Re†F@L#~k!F@E#̄~k!‡5F@L#~k!Re†F@E#~k!‡.

Since Re†F@E#(k)‡ changes sign atk0, for the stability
condition ~34! to be satisfied fork neark0, we must have
F@L#(k) change sign atk0, in the opposite sense t
Re†F@E#(k)‡; see Fig. 6. But this forcesF@L#(k0)50,
which is untrue for generic symmetricL. Hence, generic
symmetric learning rules are unstable for postsynaptic
sponse functions satisfying Eq.~36!.

Similarly, if the imaginary part of the Fourier transform o
E has a zero:

FIG. 6. If Re†F@E#(k)‡ changes sign atk0, then for the product
F@L#(k)Re†F@E#(k)‡ to be negative aroundk0 we must have
F@L#(k) also change sign atk0, in the opposite sense t
Re†F@E#‡(k). Arbitrary units.
02192
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Im†F@E#~k0!‡50 for some k0 , ~37!

then generic antisymmetric learning rules are unstable.
Pure antisymmetric learning rules have another difficu

since they satisfy*0
TdxL(x)50, near a negative image equ

librium the mean weight change per cycle due to an antisy
metric L is zero, to first order ing. The total mean weight
change per cycle is therefore approximatelya. Hence, nega-
tive image equilibria for pure antisymmetric learning rul
are only possible ifa50 ~no nonassociative learning!.

Cooperative stability. It follows from Eq. ~30! that the
sum of stable learning rules is stable; but it is also clear t
given a genericE, there exist pairs of learning rulesL1 and
L2, each individually unstable, for which the sumL11L2 is
stable. This is most easily seen by direct computation in
slow learning, dense spacing, long period limit, via Eq.~34!
~see the examples calculated below!.

Duality principle. InterchangingL and E in Eq. ~25!
transformsQi j to Qji , henceQ to QT, henceQ1I to (Q
1I )T. The eigenvalues of a real matrix are unchanged
transposition. The stability condition, that all eigenvalues
Q1I have norm less than 1, is thus invariant under int
change ofL andE. In other words, a PSPE and learning rule
L are a stable pair if and only if the PSPL and learning rule
E are a stable pair.

This has potential biological relevance if the function
forms of PSPs and associative learning rules overlap.
single-lobe exponential anda function learning rules treated
in the examples, below, are also plausible PSPs, hence d
ity applies.

Inversion principle. ReplacingE with 2E andL by 2L
in Eq. ~25! leavesQi j invariant, henceQ1I invariant. The
stability condition is therefore invariant under inversion
both E andL. In other words, a PSPE and learning ruleL
are a stable pair if and only if the PSP2E and learning rule
2L are a stable pair.

In particular, the stable learning rules for an inhibito
PSP are just minus the stable learning rules for the co
sponding excitatory PSP. Plasticity at inhibitory synaps
was explored in Ref.@31#, and preliminary experimental evi
dence was given in Ref.@32#.

Independence of normalization. In the slow learning and
dense spacing limit, the stability conditions, Eq.~33! or Eq.
~34!, are invariant under multiplication ofL or E by positive
constants. Hence, provided the magnitudes ofL or E are not
so large that the slow learning assumption is violated, sta
ity does not depend on those magnitudes. In particular
working with specific examples it is not necessary to giveL
or E any overall normalization.

VII. EXAMPLES

Working in the slow learning, dense spacing, long per
limit, we now compute explicit criteria for stability whenE
and L have functional forms commonly used in the spik
timing-dependent plasticity literature. The PSPE will be as-
sumed excitatory and causal, and of exponential or al
function form. The learning ruleL will consist of one or two
‘‘lobes’’: a ‘‘pre-before-post’’ lobe~presynaptic spike before
3-9
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FIG. 7. PSPs and learning rules used in the examples.~a! The PSPE (pE)(x) is exponential forpE50 and ana function for pE51. ~b!
One-lobe learning rules of alpha function form,L I

(1)(x), for the four possible combinations ofs1 ~potentiating or depressing! and s2

~pre-before-post or post-before-pre!. ~c! Two-lobe learning rules of alpha function form,L II
(1)(x), for the four possible combinations ofs1

~pre-before-post lobe potentiating or depressing! and the sign ofA ~post-before-pre lobe potentiating or depressing!. The area of the
pre-before-post lobe is normalized to61, and the area of the post-before-pre lobe isA. Arbitrary units.
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postsynaptic spike! and/or a ‘‘post-before-pre’’ lobe
~postsynaptic spike before presynaptic spike!. Each lobe will
be of exponential or alpha function form, and either poten
ating ~positive! or depressing~negative!. SuchE andL can
be written as follows:

E (pE)~x!5xpEe2x/tEH~x!,

L I
(pL)

~x!5s1~s2x!pLe2s2x/tLH~s2x! ~one lobe!,

L II
(pL)

~x!5
s1

tL1

pL11 xpLe2x/tL1H~x!1
A

tL2

pL11 ~2x!pL

3ex/tL2H~2x!, ~ two lobe!

whereH is the Heaviside function

H~x!5H 1, x>0

0, x,0.

The parameters~see Fig. 7! are as follows:pE ,pL50 for an
exponential or 1 for an alpha function;tE , tL , tL1

, andtL2

are positive time constants;s1511 for a potentiating lobe
or 21 for a depressing lobe;s2511 for a pre-before-pos
lobe or21 for a post-before-pre lobe; and for the two lo
L, A is the area of the post-before-pre lobe, with the area
02192
i-

f

the pre-before-post lobe normalized to61 . We impose no
overall normalization onE or L, since this has no effect on
stability.

We assume an excitatory PSPE; to obtain the stable case
for the inhibitory PSP2E, simply replaceL with 2L in the
stable cases forE ~i.e. replaces1 with 2s1 and A with
2A).

For both the one lobe and two lobeL, there are four
possible combinations ofpE and pL : exponential or alpha
function PSP with exponential or alpha function learni
rule. We will refer to these four cases as ee, ea, ae, and
with the first letter in the pair indicating that the PSP
exponential or alpha function and the second letter referr
to the learning rule.

The Fourier transforms of theseE andL are rational func-
tions in k, and the stability condition will reduce to the re
quirement that a certain polynomial ink2, whose coefficients
are themselves polynomials in the parameters ofE andL, be
negative for allk. Since the algebra in all cases is essentia
the same, differing only in the size and coefficients of t
resulting polynomial, we present only one case~aa, one lobe!
in full detail and for all other cases simply list the end r
sults.

A. Function PSP, one-lobea function learning rule

For

E~x!5xe2x/tEH~x!,
3-10
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L~x!5s1s2xe2s2x/tLH~s2x!,

we have

F@E#~k!5
tE

2

~12 ikE!2
,

F@L#~k!5
s1tL

2

~12s2iktL!2

leading to

Re$F@L#~k!F@E#̄~k!%5C Re@s1~11 is2ktL!2~12 iktE!2#

5Cs1@s2
2tL

2tE
2k41~4s2tLtE2s2

2tL
2

2tE
2 !k211#,

where C5tL
2tE

2/@(11s2
2tL

2k2)2(11tE
2k2)2#. Since C.0,

the stability condition is then

s1@s2
2r 2k41~4s2r 2s2

2r 221!k211#,0 for all k,
~38!

wherer 5tL /tE . The expression on the left is a quadratic
k2. The condition is impossible fors1511 ~it fails at k
50) but for s1521 more work is required. The quadrat
ax21bx1c is negative for allx>0 if and only if a,0 and
(b,0 or b224ac,0). Applying this condition to Eq.~38!
with s1521 yields

r 224s2r 11,0 ~39!

or

~r 2s2!2~r 226s2r 11!,0 ~40!

For s2521 these give222A3,r ,221A3 or 23
22A2,r ,2312A2, both of which are impossible be
causer .0. For s2511 we get 22A3,r ,21A3 or 3
22A2,r ,312A2; the former is contained in the latte
giving stability if and only if

s1521, s2511,

322A2,
tL

tE
,312A2. ~41!

The only stable case is depressive and pre-before-post,
tL /tE constrained to lie in a finite interval~Fig. 8!. Note that
this interval containstL /tE51, whereL52E ~the canoni-
cally stable learning rule!.

Duality is also applicable here. InterchangingE andL in
this example is equivalent to interchangingtE and tL and
multiplying bothE andL by 21. The multiplications offset
and we are left withr replaced by 1/r . It follows that if the
interval of stability for the pair (E,L) is s1,r ,s2, the cor-
responding interval for the pair (L,E) is s1,1/r ,s2. But by
02192
ith

duality these intervals must coincide; hence we must h
s151/s2. This is indeed the case fors15322A2 and s2

5312A2.
The instability of thes1511 case for anytE andtL , by

the failure of the stability condition atk50, is just the area
sign condition.

B. Summary of Results

For the one-lobe learning rules the stable parame
ranges are all easily calculated:

ee: s1521,s2511, all tL /tE

ea: s1521,s2511, tL /tE,2

ae: s1521,s2511, tL /tE.1/2

aa: s1521,s2511, 22A3,tL /tE,21A3.

Note that in all four cases we get instability, for alltL and
tE , if L is not depressive and pre-before-post. ForL depres-
sive and pre-before-post, all four cases have some rang
tL /tE in which L is stable. The extent of that range depen
critically on the precise functional form ofE andL; but for
1/2,tL /tE,2 we have stability independent of the fun
tional form of E andL.

For the two-lobe learning rules the polynomial arising o
of the stability condition has coefficients depending ons1
and on three continuous parameters:r 1 , r 2, and A, where
r 15tL1

/tE , r 25tL2
/tE . The polynomials are given in the

Appendix.
In all four cases,s1511 is always unstable. Fors15

21, the boundaries of the stable region in (r 1 ,r 2) for vari-
ous values ofA are plotted numerically in Fig. 9.

For one-lobe learning rules we found that only depress
and pre-before-post permits stability. For two-lobe learn
rules, the pre-before-post lobe must be depressive for sta
ity, and the post-before-pre lobe cannot have areaA greater
than 1. This is just the area sign condition: the area of
pre-before-post lobe is21, and for stability when paired
with an excitatory PSPE the total area under the learnin
rule L must be negative.

FIG. 8. Range of stable one lobeL for givenE, in case aa. The
learning rule must be depressive and pre-before-post, with
22A2,tL /tE,312A2. Stable examples are drawn with sol
lines; endpoints of the stable interval are drawn with dashed lin
Arbitrary units.
3-11
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FIG. 9. Boundary curves of the stable region in (r 1 ,r 2) for various values ofA, for two lobeL with s1521. Curves are labeled byA.
Curves withA.0 are drawn with solid lines, curves withA,0 with dashed lines. In all cases the region of stability is on the side of
curve containing the diamond (L) in the upper left corner of the plot. The interval of stability for the corresponding one-lobe learning
is the portion of ther 1 axis in bold.
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For A,1, the effect of the post-before-pre lobe shows
following general trends: in cases ee and ae, as the abs
areauAu of the post-before-pre lobe increases, the stable
gion in the relative time constantsr 1 andr 2 tends to shrink.
Hence, the post-before-pre lobe can be thought of as de
bilizing in such cases. In cases ee and ae the situation is
clear. Increasingly negativeA ~larger depressive post-before
pre! is uniformly destabilizing, but increasingly positiveA
~larger potentiating post-before-pre! appears to be destabiliz
ing for small r 2 but stabilizing for larger 2.

Cooperative stability, in which a two-lobe rule is stab
while each of its lobes individually would be unstable, o
curs in cases ea, ae, and aa: any point (r 1 ,r 2) in a stable
region, withr 1 outside the interval in which the correspon
02192
e
ute
e-

ta-
ss

-

ing one-lobe rule is stable, is an example of cooperative
bility.

Finally, the shape and extent of stable regions for tw
lobe learning rules, or the extent of stable intervals for o
lobe learning rules, depend critically on whetherE andL are
exponential ora function in form. This suggests that in orde
to infer even such qualitative properties as stability or ins
bility in a biological context, the learning rule must b
known with considerable precision.

However, for particular values of some parameters
dependence on functional form may be such that useful c
clusions can still be drawn in the absence of such precis
for example, the stability in one-lobe, depressive pre-befo
post learning rules withtL /tE.1, independent of whetherE
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or L are exponential ora function in form. This particular
finding has direct relevance to the learning rule obser
experimentally in mormyrid ELL@7#. The experimental data
are not precise enough to suggest a particular functio
form, but do indicate a one-lobe, depressive, pre-before-
rule, with a width of the same order of magnitude as
width of a PSP. Stability of such a rule is consistent with t
analytic results derived above.

VIII. SUMMARY

We have investigated the existence and stability of ne
tive image equilibria in spike-timing-dependent plastici
The network architecture of the neural model is based on
known anatomy of mormyrid ELL, a cerebellum-like stru
ture that is the initial site of electrosensory processing
mormyrid electric fish.

We proved that two conditions must hold for the existen
of negative image equilibria. First, the high frequency co
tent of the Fourier transform of the repeated external in
must be less than that of the postsynaptic potential funct
Eq. ~13!. Second, the nonassociative and associative com
nents of the learning rule must satisfy a relative magnitu
constraint, Eq.~18!.

We proved a necessary and sufficient condition for sta
ity of negative image equilibria, Eq.~30!. The condition in-
volves the Fourier transforms of the associative compon
of the learning rule and the postsynaptic potential functi
We found stability to be independent of the nonassocia
component of the learning rule, independent of the form
the repeated external input, and independent of the form
the postsynaptic gain function~provided the latter is a strictly
increasing function of the postsynaptic potential!.

The general stability condition derived in this paper
consistent with stability of the experimentally observ
spike-timing-dependent learning rule in mormyrid ELL.
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APPENDIX

For completeness we provide below the polynomial c
ditions for stability of the two-lobe learning rules treated
the examples.
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ee:ak41bk21c,0 for all k,

a5s1r 1r 2
22Ar1

2r 2 ,

b5s1~r 2
21r 1!1A~r 1

22r 2!,

c5s11A

ea:ak61bk41ck21d,0 for all k

a5s1r 1r 2
3~2r 221!2Ar1

3r 2~2r 111!,

b5s1r 2~r 2
323r 1

2r 216r 1r 21r 1!1Ar1~r 1
323r 1r 2

2

26r 1r 21r 2!,

c5s1~2r 2
22r 1

212r 1!1A~2r 1
22r 2

222r 2!,
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ae:ak41bk21c,0 for all k
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2r 2

41Ar1
4r 2
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2r 2
314r 1r 2

42r 1r 2
313r 1

2r 2
2

12r 1r 2
2!1Ar1~2r 1

412r 1
3r 2

224r 1
4r 22r 1

3r 2

52r 1
2r 213r 1

2r 2
2!,

c5s1@23r 1r 21~r 1
21r 2

2!~r 211!21r 2
2~114r 1

24r 1r 2!#1A@23r 1r 21~r 1
21r 2

2!~r 121!21r 1
2

3~124r 224r 1r 2!#,

d5s1~2r 2
22r 1

214r 121!1A~2r 1
22r 2

224r 221!,
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