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Stability of negative-image equilibria in spike-timing-dependent plasticity
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We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by
spike-timing-dependent plasticit TDP. The model architecture closely follows the anatomy and physiology
of the electrosensory lateral line lobELL) of mormyrid electric fish. The ELL uses a spike-timing-dependent
learning rule to form a negative image of the reafferent signal from the fish’s own electric discharge, thus
improving detectability of external electric fields. We derive sufficient conditions for existence of the negative
image and necessary and sufficient conditions for stability, for arbitrary postsynaptic potential functions and
arbitrary learning rules. This significantly generalizes earlier investigations. We then apply the general result to
several examples of biological interest, including a class of learning rules consistent with the rule observed
experimentally in the mormyrid ELL.
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[. INTRODUCTION sensory input due to its own discharge, the mormyrid sends
to the ELL a sequence of time-delayed, time-locked copies
Synaptic plasticity is thought to be a fundamental mechaef the motor command which initiates the dischafdef.
nism for learning and adaptation in biological neural net-[16], citation(a)]. In the ELL these signals innervate medium
works[1]. The activity dependence of synaptic plasticity hasganglion(MG) cells through plastic synapses. The MG cells
been observed experimental®,3], but the precise nature of also receive primary afferent input from electroreceptors on
that dependence and its functional or computational consehe skin. The plastic synapses onto MG cells enable forma-
quences are still largely unknown. The purpose of the presenion and maintenance of a negative ima#é] of the primary
paper is to derive clear functional consequences from speafferent signal, via a spike-timing-dependent learning rule.
cific forms of activity-dependent synaptic plasticity. This negative image effectively nulls out the sensory effect
Current models of synaptic plasticity are of two main of the fish’s own discharge, thus improving detectability of
types: rate-based and timing-based. In rate-based modejserturbations due to external objects. Plasticity allows the
changes in synaptic weight depend on the mean spike rate ekgative image to be maintained despite changes in the pre-
presynaptic and postsynaptic cells, usually via correlationsise form of the discharge that result from fluctuations in
[4,5]. Since mean spike rates are averages over time winyater conductivity or from changes in body shape over the
dows containing many spikes, the timing of individual spikesfish’s life span.
is unimportant in rate-based models. Recent experimental To be behaviorally useful to the fish, the set of synaptic
studies[6—8] have shown that in some systems the precisaveights which create the negative image must be a stable
timing of individual spikes can have a pronounced effect orequilibrium for the synaptic dynamics induced by the spike-
synaptic plasticity. Models of suchpike-timing-dependent timing-dependent learning rule. Robelris] explored stabil-
plasticity (STDP [9] calculate changes in synaptic weights ity of such equilibria under restrictive conditions on the form
by combining the effect of all pairs of presynaptic andof the learning rule and of the postsynaptic potential func-
postsynaptic spikelsl0—15, where the effect of each pair is tion. The approach developed here allows us to derive ana-
a function of the time between theftalled the spike-timing- Iytical criteria for both existence and stability of negative
dependent learning rule image equilibria for systems witlarbitrary spike-timing-
One system in which STDP has been observed experdependent learning rules and arbitrary postsynaptic potential
mentally, and where its functional role is understood, is thefunctions.
electrosensory lateral line lob&LL) of mormyrid electric The structure of the paper is as follows. In Sec. Il we
fish [7]. The mormyrid identifies objects in its environment describe the architectural and dynamical features of the
by emitting a stereotyped electrical discharge and detectingnodel, and in Sec. 11l we derive dynamical equations for the
the perturbations to the resulting electrical field at the skirsynaptic weights. In Sec. IV we derive conditions for exis-
surface due to external objects. To cancel the predictablgence of negative image equilibria, and in Sec. V conditions
for stability of such equilibria. In Sec. VI we discuss a num-
ber of general properties and consequences of the existence

*Electronic address: williaal@ohsu.edu and stability criteria, and the role played in those criteria by
Electronic address: robertpa@ohsu.edu the various components of the model. In Sec. VII we explic-
*Electronic address: tleen@cse.ogi.edu itly evaluate the general stability criteria for several classes
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associative change in the weighty; , and each postsynaptic
and presynaptic spike pair causes a change iaccording to
a spike-timing-dependent learning rule, namely, a function of
the time difference between the postsynaptic and presynaptic
spikes(associative learning

The repeated external input has the form of a brief stereo-
typed pulse with variable interpulse interval. The time-
locked inputs occur for approximately the duration of the
pulse, and are absent during interpulse intery@ls Hence
the events which induce plasticity are restricted approxi-
N mately to the duration of the pulses, provided the width of
the learning rule is much less than the width of a pulse
requirement we will impose belowFor the purpose of cal-
culating the weight changes due to plasticity we may there-
fore omit the interpulse intervals, and replace the repeated
external input with gperiodic input obtained by concatenat-

FIG. 1. Schematic of the architecture. The postsynaptic cell relNd the stereotyped pulses. _
ceives inputs fronN presynaptic neurons, a repeated external input  D€noting the resulting periogbulse width by T, we then
#(x), and unspecified noisy inputs. Presynaptic netrspikes at ~ Us€ two time variablesxe[0,T) for the time within each
time x; in each period of$, and has synaptic weight; onto the  repetition of the external input, arteEnT, n e Z for the time
postsynaptic cell. of initiation of each period20,21,27. General dynamical
quantities will be functions of the paix(t). Let x; be the
of learning rule and postsynaptic potential function, and aptime within each period when presynaptic ce#ipikes, and
ply these results to the learning rule observed experimentally;(x,t) its corresponding weight. Since presynaptic spikes
in the mormyrid ELL. are time locked to the external inpu, is independent of.
Let £(s) be the PSP evoked by neurdrat time s after a
Il. FRAMEWORK spike. We assuméis causal£(s) =0 fors<0. Leta be the
nonassociative weight change due to a presynaptic spike, and
The model consists of a single postsynaptic ¢edpre-  £(s) the associative weight change due to a postsynaptic
senting an MG celldriven by the following inputs: an array spike times after a presynaptic spike. Let(x) be the peri-
of time-locked presynaptic cellgepresenting the efference odic external input, antl (x,t) the total postsynaptic poten-
copy of the motor commanga repeated external inprep-  tial due to the non-noisy inputs. We assume that for gach
resenting the postsynaptic potential in the MG cell due tahe meaninstantaneous postsynaptic spike rate der{gity)
primary afferents and other unspecified inputs collectively s given byf(U(x,t)) for some positive and strictly increas-
modeled as noisgl9-21 (Fig. 1). This architecture is based ing functionf.! The functionf can be thought of as the ef-
on the mormyrid ELL, but is general enough to capture thefective gain of the postsynaptic cell in the presence of the
dynamics of other neural systems hypothesized to have afoisy inputs. High or low noise correspond tofamith small
array of time-delayed, time-locked inpUt&2,23. or large maximum slope, respectively. No attempt is made to
For the spiking dynamics of the postsynaptic neuron wenclude a refractory period for postsynaptic spikes; and we
use the spike respon$8R) model[24,25, without refracto-  will assume that the period @f is greater than the refractory
riness. In such models the effect of presynaptic spikes on thgeriod of the presynaptic neurons, so that refractoriness on
postsynaptic cell is represented by a postsynaptic potentighe presynaptic side is irrelevant.
function (PSP, which is the change in the postsynaptic  Changes in weights will be implemented as discrete steps
membrane potential due to the presynaptic spike, as a funggith no internal time course. In the present model there are
tion of time. Spike response models have been shown tgyo natural choices for the time at which weight changes
include leaky integrate-and-firdLIF) models as a special occur: asynchronouslinstantaneously, whenever a presyn-
case[26]; so while the formalism of SR models may appearaptic or postsynaptic spike occlirsr synchronouslyonce
more abstract than LIF, in fact there is no loss of biophysicaher sweep of the repeated external input, updating all

realism in using SR. We do so here because the SR formajyeights simultaneous)yWe adopt the latter strategy, updat-
ism is more convenient than LIF for the derivation of ana'ing We|ghts ak=0 for each[:nT,n c. The Va'ue OﬁNi in

lytical results.
Each presynaptic cellspikes exactly once at a fixed time
within each sweep of the repeated external input, causing airhs simplified treatment of the noise is justifipdst hocby the
corresponding PSP in the postsynaptic cell. _ _calculations to follow. Since we will assume that weight changes
The total membrane potential in the postsynaptic cell isjye to different spikes or spike pairs add linearly, we will find that
the sum of these PSPs, weighted by synaptic efficacieghe mean synaptic weight dynamics will depend only on the mean
(weights w;, and the two external inputs. This membranepostsynaptic spike rate density, and not on any higher moments.
potential induces the postsynaptic cell to spike at a certailEven the functional form of will turn out to be irrelevant to sta-
(noisy) rate. Each presynaptic spike causes a congtamt-  bility, provided it is strictly increasing.

noise
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FIG. 2. Changes in weight due to pairing of presynaptic and postsynaptic sf@ké&iring of a postsynaptic spike at time,{) and
presynaptic spike by neurdrat time (; ,t) causes a chang&(x—x;) in weightw; . (b) For x within 7, of a period edge, we must include
pairing with presynaptic spikes in the neighboring period. Pairing of a postsynaptic spike akttnar(d presynaptic spike by neuroat
time (x; ,t+T) causes a chang@(x—x;—T) in weightw; . Arbitrary units.

the period beginning at (), is then independent of, and  For typical biological applications, wherg <T, at most one
will be denotedw;(t). For synchronous updating to be a of the above terms is non-neglligi.ble, but all must bg included
reasonable approximation, we must assume that weigh handle cases wherke-x; is within 7 of T or —T (Fig. 2.
changes per cycle are small relative to the weights theml addition, 7 <T allows us to approximate Eql) by
selves(slow learning rate Changes in weights due to differ- "

ent spikes or spike pairs are assumed to add linearly. e

In biological systems, synaptic weights have bounded n:z_x LOEX=NT) = LX), @)
magnitude and do not change sign. Since the present paper is
focused solely on the dynamics near equilibria, we impos‘?/vhere Z(s)zE
no boundary conditions on the model. The results still appIX/vith periodT.
to the biological case provided the weight equilibria are in
the region enclosed by biological bounds.

We assume homogeneous parameters: the sealad the
functionsé, L are the same for all presynaptic neurons, an
the timesx; are regularly spacec;=ié8, i=0,1,... N—-1
for someés>0, N=T/6>1.

For simplicity in the derivation of the weight dynamics, it T 3
will be convenient to assume théfs), L(s) are zero or neg- f dx f(U(x,t))L(X—X;).
ligible for |s|> 7,7, respectively, withrg , 7 <T. We will 0
also require the learning rate to be slow< r,,, wherer,, is . .
the time scale on which weights undergo significant reIativeThe mean'to'tal change Wi(t) due to both nonassociative
change. For the existence of approximate negative imag@nd associative learning is therefore
states we will need the spacing of presynaptic spike times T .
much smaller than the widths éfand£: 6<7¢,7 . These (Aw;(1))= a+f dx f(U(X,1)L(X—X;). (3)
time-scale assumptions can be summarized as 0

n—_L(s—nT) is the periodization of(

Quantity (2) is the change inw;(t) due to a single
postsynaptic spike atx(t). Postsynaptic spikes betweén
ndt+T occur at a mean rate densityU(x,t)); hence the
ean total change due to all postsynaptic spikes between
andt+T is

5<(tg,1)<T<7,,. We now compute the postsynaptic potentid(x,t). The
contribution toU(x,t) due to the presynaptic spike by neu-
Typical values for the mormyrid ELL aré<1 ms[Ref. roni at (x;,t—nT) is wi(t+nT)&(x—x;+nT). For 7g<T
[16], citation (b)], 7=~20 ms [7], 7,~40 ms [7], T  this quantity is non-negligible for at most one value rof
~ 80 ms[Ref.[16], citation (b)], and r,,~ 10°T [7]. eithern=0 (current perioglor n= —1 (previous periogl But
to properly handle edge effectBig. 3 we include both, for
. WEIGHT DYNAMICS a total contribution of
To obtain the mean weight dynamics, we compute the Wi(t=T)E X=X —T) +w;(t) E(X—X;). (4)
mean value ofv;(t+T) —w;(t). The nonassociative change ) ) o
in w;(t) due to the single presynaptic spike ai t) is a. We assume tha_t the Iearnln_g rate is sufficiently slow so that
For the associative change due to presynaptic and postsyWe May approximate quantit) by
aptic spike pairs, consider the effect of a single postsynaptic
spike at §,t). The pairing of this spike with the presynaptic
spike at §; ,t) causes a chang@x—x;) in w; . To properl . . .
hgndle eglge)effects, we aIso%ﬁcludeI )the péiring 5vitr? prZsyn'—:'na"y' 7e<T allows us to approximate quantit§) by
aptic spikes atx; ,t—T) and ; ,t+T), for a total change of

Wi(D[EX=X—T)+E(x=x))]. ®)

L(X=X—=T)+ L(X=X;) + L(X=x+T). (1) Wi(t)nzz_w EX =X =T =wi(DEX=X)), ©)
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FIG. 3. Postsynaptic potential due to presynaptic spit@<otential at time X,t) due to presynaptic spike by neurbat time (; ,t) is
w;(t)E(x—x;). (b) For x within 7¢ of 0, we must include the potential due to presynaptic spikes in the preceding period. The potential at
time (x,t) due to the presynaptic spike by neuroat time (; ,t—T) is w;(t—T)&(X—x;+ T). Arbitrary units.

where&(s)=37___&(s—nT) is the periodization of with !N the following, we first show that approximate negative
periodT. "= image states exist provided a certain condition holds on the
Quantity (6) is the contribution tdJ(x,t) from neuroni. Fourier coefficients of the postsynaptic potential function
The total postsynaptic potential is the summed contributiorand the repeated external inp#it and provided the presyn-
from all presynaptic neurons, plus the repeated external imaptic spike time spacing is sufficiently small. We then

put: show that for a particular value &f, (depending ony, L,
N o and f) there exists an approximate negative image state
U(x,t)=¢(x)+2 Wi (1) E(X—X;). (7)  which is also an equilibriuntfixed poind for the weight
=t dynamics.

Equations3) and(7) define the mean weight dynamics. The  For genericff and ¢, Eg. (8) cannot be made an exact

common periodicity of the function§, £, and ¢ is an im-  €quality for all x, because that would require solving infi-
portant feature, allowing the systematic use of Fourier techitely many independent linear equatidiesie for eachx) in

niques. only finitely many unknownsgthe N weights{w;}). But if
we replace the discrete set of weights with a continuum
IV. THE NEGATIVE IMAGE weight density)V, then the analog of Eq8) can, under
certain conditions, be made exact for all Given such a
A. Existence of negative image states density, we then recover the biological case of discrete

A set of weights{w;} for which the total postsynaptic Veights{w;} for which Eq.(8) is approximately true by
potential U(x,t) is approximately constant ir will be re-  defining the sefw;} to be a discrete approximation 10.
ferred to as ampproximate negative imagaate. For such a Let W(y) be a weight density, with(y)dy being the
state the contribution to the postsynaptic potential due to théPtal weight for presynaptic spikes occurring betwgeand
presynaptic cells alone is, up to an additive constagtan Y +dY, forye[0,T). The continuum analog of E¢8), with
approximate negative imad€ig. 4) of the external inpugy: ~ €Xact equality for alk; is

N T o
S, w0 1) =Ug~ (). ® | aywiyo-y)=ug- a0, ©
i=
To solve this equation foyV we take the Fourier decompo-
U R N U(w t) sition. Let W,=(1/T)fJdy €“YW(y) for k,=2mn/T, n
’ € 7 be the Fourier coefficients fa, and letg,,, ¢, be the
- z;"zl wj(t)g'(z —z4)] coefficients for€ and ¢. Then Eq.(9) becomes
2
-'E I ) ©
8 S g kx
U —
S W 0T &, O
| ] T * , ” .
= f dy| > Wee || X Epe knly)
0 n=—ox m=—o
t ] t+T
time, T 0 ) T
= 2 2 W.E efikmxf dyé(kmfkn)y
FIG. 4. An approximate negative image. If the postsynaptic po- e mEte " 0
tential U(x,t)=¢(x)+2}\‘:le(t)€(x—x1) is approximately some w
constantU,, then the potentiaE}\‘zle(t)%(x—xj) due to presyn- =T E W.E. e knX
aptic spikes alone is approximatdlyy— ¢(x). Arbitrary units. nie "
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Hence)V satisfies Eq(9) if and only if B. Existence of negative image equilibria
We now show that for a particuldd, there exists an
W, = Uo~ ¢o approximate negative image state that is an equilibrium for
TE, ' the weight dynamics. From E¢B), a weight stat¢w;} is an
é equilibrium if U(x)=¢(x)+2?‘zle€(x—xj) satisfies
— ®n
W, = TE, ’ n+0. (10

a+dex fUX)L(x—x)=0 forall i. (14)
0

Given such aV, we construct approximate negative image
states with discrete weights as follows. Defg(&) to be the  This is a system o equations in thé\ unknowns{w;}, but
deviation from a negative image: they are nonlinear equations for nonlinéam general such
\ equations need not have solutions, but for approximate nega-
o tive image states the nonlinearity is in some sense “small,”
9(x)=(x)~ UO_JZl Wi E(X=X)). (11 and this will allow us to show that solutions exist providgd
is sufficiently small.

For an approximate negative image state we hdyr)
=Up+g(x) with g(x)<U,, and we wish thidJ(x) to sat-
isfy Eq. (14). First defineU, so that Eq.(14) would be
satisfied ifg(x) were identically zero:

Then{w;} is an approximate negative image statg(k) is
small relative toUgy— ¢(x), for all x. Consider the set of
weights defined by

W]:5W(XJ), T
+ | dx f(Ug)L(x—x%;)=0 forall i. 15
where 6 is the spacing of thes;. These weights can be “ fo (Uo)£( ) 19
thought of as a discrete approximation to the weight density
W(y). Substituting into Eq(11) and using Eq(9) gives This requires
N . T . —a _
gx)=2, 5W(xj)5(x—xj)—f dy W(Y)E(Xx—Y). f(Ug)= ————— forall i
=1 0

T o
f dx L(X—X;)
0

This is the difference between a Riemann sum and the inte-
gral it approximates. The error theorem for Riemann sums _ T«
then gives an upper bound fgr T o
dx L(x)
0

T d o
l9(9l=< 5§mf>{®[1/v(y)€(x—y)]‘. (12 where the independence ibfollows from the periodicity of

L. Hence, our desiretd, exists and is given by
Hence, for|g(x)| to be small, we neet(y)E(x—y) to

be differentiable iny, hence we neet\(y) to be differen- Un=f1 —a (17)
tiable iny. A theorem of Fourier serid®8] says thai\(y) is 0 Td e '
differentiable if=;_ __|nW,| <. By Eg.(10) this places a 0 X L{x)
constraint on the Fourier coefficients 8fand ¢:
. providede, L, andf satisfy
n
> Ed’” <o, (13 .
n===1"=n minf(u)< <maxf(u). (18

T
This inequality requiresp,, to go to zero as1— = more ’ fo dx L(x) "
rapidly thanE,/n?. In particular, the high frequencfarge

[n]) spectral conEent ofp must be less than the high fre- From Eq.(15), U(x)=U,+g(x) satisfies Eq.(14) if and
quency content of. Intuitively, in order for the convolution ~only if

of £ with a smooth weight density) to be able to “match” T
the high frequency components ef¢, the high frequency f dx [f(Ug+ g(x))_f(uo)]Z(X_xi):O forall i.
content of¢p cannot be too large. 0

If Eq. (13) is satisfied, ands is sufficiently small, then (19
from Eq. (12) the deviationg(x) from an exact negative .
image is small, hence approximate negative image states ekOr brevity let h(x)=f(Uo+9(x))—f(Uo) and Li(x)
ist. =L(x—X;). Then Eq.(19) can be written as
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(h,L;)=0 foralli, (20)
where(-,-) is the inner product defined by
T
<fl,f2>:f0 dX fl(X)f2(X), (21)

for f1, f, in the spaceX of smooth functions on the interval
[0,T].

Let H be the set of functionk corresponding to all pos-
sible values of the weightgw;}:

N

2w

S(x X)) )

il

where we have usedJo+g(x)=¢(x)— =L, w;E(x—X;)
from Eq. (11). Let S be the subspace of consisting of all
linear combinations of théL;}, and S- be the (infinite-
dimensional subspace ofX orthogonal toS in the inner
product defined by Eq21). Then there exists amsatisfying
Eqg. (20) if and only if H andS* have nonempty intersection:

=[h:h(x)=f(¢(x

—f(Ug),w;eR,j=1,

HNS Q. (22)

We claim that conditior(22) holds if § is sufficiently small.
If &is small, then bound12) implies thatg(x) is small for
all x. In that caseh(x)=f(Uy+g(x))—f(Uy) is approxi-
mately its linearization irg, which we denote byy(x):

h(x)=ho(x)=1"(U)g(x)
N

=f'(Uy) <j>(x)—UO+J_Z,l WJ-Z‘(X—XJ-) .

Let H, be the set of such corresponding to all possible
values of the weight$w;}:

N

gz/>(x)—UO+JZl WJ-:‘Z(x—xj) ,

ol

Then the condition thatl, have nonempty intersection with
s,

Hoz[homo(x):f'(uo)

WjER,jzl,

HoNS: # T, (23)

is equivalent to existence dfye Hy such that(hg,L;)=0
for all i. This is equivalent to the linearization of syst¢h9):

.
f dx f'(Ug)
0

forall i,

N
B(X)—Ug+ 21 W E(Xx—X;) | L(x—x)=0
J:

which can be rewritten as

PHYSICAL REVIEW E68, 021923 (2003

/i/

Hy

FIG. 5. Transversal intersection theoremH§ has transversal
intersection withS" andH is sufficiently close td,, thenH inter-
sectsS*.

N
2 Qyw;=7, (24
wherey= f{dx f'(Ug)[ ¢(x)—U,] and
T . o
Qij:f’(Uo)fO dx E(X—Xj) L(X—X;). (25

This is a system oN linear inhomogeneous equations in the
N unknowns{w;}, which has a solution provided the coeffi-
cient matrixQ is invertible. The eigenvalues @ will be
calculated in the following section, and for genefiand £
all eigenvalues are nonzero. HenQeis generically invert-
ible, so that conditionf23) holds. Furthermore, the intersec-
tion of Hy with S* is generically transvershot tangent
Now as 6—0, H—Hj in the metric induced by inner
product (21). By the openness of transversal intersection
(infinite-dimensional versiorf29]), any sufficiently small
perturbation ofH, also intersect§". Hence for sufficiently
small 8, H intersectsS*t (Fig. 5), henceh satisfying Eq.(20)
exists. The corresponding weight stdtg;} is an approxi-
mate negative image equilibrium.

V. STABILITY CRITERION

We now derive a necessary and sufficient condition for
the mean stability of approximate negative image equilibria,
by examining the linearized weight dynamics around such
states. Let{\fvj} be an approximate negative image equilib-
rium satisfying Eq.(11) with

N
U(X)=¢(x)+§1\7vj€(x—xj)=U0+§(X). (26)
Solving for ¢(x) in Eq. (26) and substituting into Eq(7)
yields

N
U(x,t)=U0+§(x)+JZl v (DEX—X)),

021923-6
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wherevj(t)=wj(t)—\7vj is the deviation of weigh from its
equilibrium value andj(x) is the deviation from a negative
image in the equilibrium statefvj}. To first order inv; we
then have

f(U(X,1)=F(Ug+g(x)+f'(Ug+g(x))
N
szl 0 (DEX=X)). 27)

Substituting Eqg. (27) into Eg. (3) and using Aw;(t)
=Av;(t) yields

(Avi(t))=a+ fonx f(Ug+g(X))L(X—X;)

N
' (Uo+§00) 2, 0j(DEX—X)) L(X—X,).

From the equilibrium condition, Eq$14) and(26), the term
in Eq. (28) of zeroth order irv; vanishes. Hence

N
<Avi(t)>zj21 Pijuj(t),
where
T “ 0 °
P":Jo dx f'(Ug+g(x))EX—Xj) L(X—X;).

Now assume’ is sufficiently small so that

!

i )<f
X)<<
g -

for all x.

Then f’(Uo+§;(x))=f’(U0) for all x, so thatP;;=Q;;,
whereQ is the matrix defined in Eq25), and we obtain

N
<AUi(t)>2j§=:l Qijvj(t).

Taking the mean on both sides and usidduv;(t))
=A(v;(t)) yields

N
A<vi<t>>zj§l Qij{vi(D). (28)

Equation(28) gives the linearized dynamics f¢v;(t)) near
(vi(t))=0, hence fow;(t)) near the approximate negative
image equilibrium{w;}.

The system, Eq(28), is stable if and only if all eigenval-

ues ofQ+1 have norm less than 1. Due to periodicity:‘i)ﬁ
and regular spacing of tHe;}, the matrixQ has the property

that each of its rows equals the row above it shifted one entry

to the right(and wrapped around at the edge&uch matrices

PHYSICAL REVIEW E 68, 021923 (2003

are calleccirculant[30] and their eigenvectors and eigenval-
ues are easily found, as follows. ufis the vector with com-
ponentsu;=e'**i, then

N N
(QU)i:zl Qijujzzl Che TdX OE(X—XJ)Z(X—Xi),
i= i=

0

so that

N

=2

(QU)| |k(xj7xi)dex E‘(x—X]-)Z:(X_Xi)- (29)
0

By periodicity of £ and £, the integral in the above expres-
sion is a function ok; —x; moduloT. The factore™ i~ is
also a function ok; — xI moduloT providede’*T=1. Now if
the{x;} are regularly spaced, the sum oyef a function of
X;—X; modulo T is independent of. In that case Eq(29)
would imply that Qu); /u; is independent off, henceu is an
eigenvector ofQ, with eigenvalue equal to the right-hand
side of Eq.(29). We get a complete set of such eigenvectors
by takingN values ofk such thate'*"=1 and the functions
e'**i are independent functions afHere we choose

The corresponding eigevalues Qfare

pzd

=2

N T o o

e'kn(xrxi)f dx E(X—X;) L(X—X;).
= 0
Letting z;=X;—X;, making the change of variablgs= x;
—X, and using periodicity oE C gives

N

N
) T o ° . o T
=2, el fo dy E(=Y) £(z=y)= 2, &L E(x),

where *; is convolution on the intervdlo,T], " is horizontal

reflection[%(y)z%(—y)], and sincgz;} ={x;} we have re-
placedz; by x; in the sum.
The stability condition ig1+\,|<1 for all n:

N
Stability:| 1+ >, e‘aniZ‘,*TZ‘(xj) <1,
=1
2n
knz?, n=0,1, N=1. (30)

In the biological setting two limiting regimes are of special

interest: slow Iearningtoc smal) and dense spacings(
small.

If £ is small, then so are the eigenvalues@f If \,
=a,+ib, with a,,b, real, we have

|1+ \q|2=(1+a,)?—b2=1+2a,+(a2—b?).

021923-7
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If a, andb, are sufficiently small, this quantity is less than 1 VI. GENERAL REMARKS

if and only if a,<<0. Hence for sufficiently small, all The roles of nonassociative and associative learning
eigenvalues oQ+1 have norm less than 1 if and only if all goth nonassociative and associative learningsaad £, re-
eigenvalues o have negative real paftThe stability con- spectively play a role in whether approximate negative im-
dition then becomes Re,<0 for all n. Hence in the slow 540 equilibria exist, via Eq18). They are also involved in
learning limit, Eq.(30) becomes determining the location of such equilibria, via Ef4). The
N _ interpretation of Eq.14) is that at equilibrium, the mean
Slow learning: Rez eianJZ*TZ’(xiKO, change due to nonassociative learniag fust be precisely
i=1 opposite to the mean change due to associative leafttieg
L term). If the postsynaptic spike rate densftys bounded,
n=01,...N-1 @D this places a relative magnitude constraint enand L,
namely, Eq.(18). If this constraint is violated then the mean
changes due to associative and nonassociative learning are
unable to balance one another, and no negative image equi-
librium is possible.
By contrast, only associative learning plays a role in the
T . = stability of approximate negative image equilibria, via Eq.
)‘“:f dx Lo E(x), n=0,1,... . (30). The irrelevance of nonassociative learning for stability
0 has an intuitive interpretation: near an approximate negative
o = image equilibrium, the mean nonassociative change is can-
Hence\, is just thenth Fourier coefficient ofC«+t&. The  celed by the mean associative change due the constant

The dense spacing limit%—0) is the continuum limit in
X; . The discrete weight density; /T is replaced by a con-
tinuum weight densityV(x), sums ovelx; are replaced by
integrals overx, andN—oo. This yields

Fourier convolution theorem then gives postsynaptic potential, around whichU(x,t) fluctuates.
U Only the deviations obJ (x,t) from U, cause a net change in

=L.E,=L,Ep, the weights, and these changes are purely assoc|atireto

postsynaptic spikes generated hj(x,t)]. Alternatively,

I nonassociative learning can be analogized to a constant ex-

WhereEn,En ,L are thenth Fourier coefficients oE,E,L, . . !

| Tis th | o Sub ternally applied force in a physical system. Such a force
_respectlve Y an__|s the complex conjugate u stitut- changes the location of equilibria, but has no effect on the
ing into the stability conditio1+\,|<1 for all n gives the dynamics around equilibria.

dense spacing limit of E¢30): The role of the repeated inpuFor a given postsynaptic
o o potential responsg, the repeated inpup plays a role in the
Dense spacing: [1+L,E;[<1, n=01,.... (32)  existence of approximate negative image states via By:
¢ cannot have too much high frequency content relativé to
for such states to exist.
Assuming ¢ is such that approximate negative image
states exist, it then plays an important role in determining the

Finally, with both slow learning and dense spacing the sta
bility condition becomes

Slow learning, dense spacing: [RGE,]<0, weight configurations in such states, and in particular, in ap-
proximate negative image equilibria, via E).
n=01,.... (33 But ¢ plays no role in the stability of the resulting nega-

TP . ... tive image equilibrium. This is intuitively reasonable, since
A further simplification follows in the long period limit, . ) A - .

in approximate negative image statesjs “nulled out” by
e, 7L <T. Holdmg Tg,7. constant and taking —, the

the summed postsynaptic potentials due to time-locked pr-
Fourier series of Lin Eq. (33) approach Fourier transforms esynaptic spikes.
of &, L, respectively. The stability condition then becomes The role of noise.The functional form of the mean
postsynaptic spike ratieaffects the existence and location of
the negative image equilibrium via Eq4.8) and (14).

— But providedf is strictly increasingso thatf’ is positive,
REFALIKAEN(K)]<O, ke (—=,). (34 fhas no effect on the stability of the equilibrium. Hence the
classification of learning rules @sear) stable or unstable is,
except for this mild monotonicity requirement, insensitive to
the fine structure of the noise. This is a post hoc justification
for not modeling the noise in more detail.

Canonically stable learning ruleL=—¢&. In the dense
spacing and slow learning limit, suppoSe= — £. The stabil-
|ty condition (33) is then

Slow learning, dense spacing, long period:

For the calculation of examples we will work in the slow
learning, dense spacing, long period limit, which is the limit
of primary biological interest in the mormyrid ELL.

°The slow learning limit can thus be thought of as the continuous
time (continuougt) limit. All eigenvalues ofQ having negative real
part are equivalent to stability of the systeitw)/dt=Q(v) and
hence ofT d(v)/dt=Q(v), which is the continuous time version of .
Eq. (28). |E,|>>0 foralln, (35)

021923-8
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Fleik) ImMLFE](k)]=0  for some ko, (37)

then generic antisymmetric learning rules are unstable.
Pure antisymmetric learning rules have another difficulty:

\// - §in9e they satisfygd?(ﬁ(x) =0, near a negative image equi-

librium the mean weight change per cycle due to an antisym-
metric L is zero, to first order irg. The total mean weight

Re FIEIR) LT T T TS - change per cycle is therefore approximatelyHence, nega-
/7 T —— tive image equilibria for pure antisymmetric learning rules
/o k are only possible ik=0 (no nonassociative learnipg
/ Cooperative stability It follows from Eq. (30) that the
PR sum of stable learning rules is stable; but it is also clear that

given a generi&, there exist pairs of learning ruled;, and
L,, each individually unstable, for which the sutqp+ L, is

FIG. 6. If RF £](k)] changes sign &,, then for the product stable. This is most easily seen by direct computation in the
FILUK)RLAEN(K)] to be negative around, we must have slow learning, dense spacing, long period limit, via E3f)
FL](k) also change sign ak, in the opposite sense to (see the examples calculated below
R A E]I(K). Arbitrary units. Duality principle InterchangingZ and £ in Eq. (25

. transformsQ;; to Q;, henceQ to QT, henceQ+I to (Q

or in other words,E,#0 for all n. Since this is true for +1)". The eigenvalues of a real matrix are unchanged by
genericE, the learning ruleC=— ¢ is generically stable. transposition. The stability condition, that all eigenvalues of

Area sign conditionin the dense spacing and slow learn- Qh+l hancz no[jm less thhan 1, dls thus Invagalmt under llnter-
. 0 change ofZ and&. In other words, a PSPand learning rule
ing limit, considern=0 in Eqg. (33). oSlnce!_o and EO_EO L are a stable pair if and only if the PSPand learning rule
are just the areas under the functiadhendé, Eq.(33) says £ are a stable pair.
that for stability, these areas must be opposite in sign. If they This has potential biological relevance if the functional
are the same sign, then the negative image is unstable. farms of PSPs and associative learning rules overlap. The
particular, if€ and £ are both nonnegative, the negative im- single-lobe exponential and function learning rules treated
age is unstable. Hence,dfis an excitatory PSP anflis any  in the examples, below, are also plausible PSPs, hence dual-
pure potentiating learning rule, the negative image is unity applies.
stable. Similarly, inhibitory PSPs with purely depressing Inversion principle ReplacingE with —& and £ by — £
learning rules are unstable. in Eq. (25) leavesQ;; invariant, henceQ +1 invariant. The

Symmetric and antisymmetric learning ruléss the dense  stability condition is therefore invariant under inversion of
spacing, slow learning, long period limit, there is a non-poth £ and £. In other words, a PSP and learning ruleC
empty, positive measure set of postsynaptic response fungre a stable pair if and only if the PSPS and learning rule
tions for which purely symmetric or purely antisymmetric — £ are a stable pair.
learning rules are generically unstable. This follows from the |n particular, the stable learning rules for an inhibitory
fact that the Fourier transforms of symmetric and antisymPSp are just minus the stable learning rules for the corre-
metric functions are pure real and pure imaginary, respecsponding excitatory PSP. Plasticity at inhibitory synapses

tively. was explored in Ref.31], and preliminary experimental evi-
Suppose the real part of the Fourier transforn€dfas a  dence was given in Ref32].
Z€ero: Independence of normalizatiom the slow learning and
dense spacing limit, the stability conditions, Eg83) or Eq.
R FE](ko)]=0  for someKky. (36) (34, are invariant under multiplication af or & by positive

i , constants. Hence, provided the magnitudeg air £ are not
Then, generically, R&F[£](k) ] changes sign dt. Suppose g |arge that the slow learning assumption is violated, stabil-

L is symmetric, so tha# L](k) is pure real. Then ity does not depend on those magnitudes. In particular, in
working with specific examples it is not necessary to give
R A L](K) AEN(K) 1= A LIKRLAEN(K)]- or € any overall normalization.

Since REF£](k)] changes sign ak,, for the stability
condition (34) to be satisfied fok neark,, we must have
F L](k) change sign atky, in the opposite sense to  Working in the slow learning, dense spacing, long period
RFAE](K)]; see Fig. 6. But this forcesH L](ko)=0, limit, we now compute explicit criteria for stability whefi
which is untrue for generic symmetri€. Hence, generic and £ have functional forms commonly used in the spike-
symmetric learning rules are unstable for postsynaptic retiming-dependent plasticity literature. The PSMill be as-

VII. EXAMPLES

sponse functions satisfying EG6). sumed excitatory and causal, and of exponential or alpha
Similarly, if the imaginary part of the Fourier transform of function form. The learning rul€ will consist of one or two
£ has a zero: “lobes”: a “pre-before-post” lobe(presynaptic spike before
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learning
PSP rule

o] = +1 ol = +1
o3 =—1 o2 = +1

time, 2 e

(@) (b)

learning
rule

A>0

(©

FIG. 7. PSPs and learning rules used in the exampéThe PSFE (PE)(x) is exponential fopz=0 and ana function forpg=1. (b)
One-lobe learning rules of alpha function forrﬂfl)(x), for the four possible combinations of; (potentiating or depressih@nd o,
(pre-before-post or post-before-préc) Two-lobe learning rules of alpha function fonﬁ,,ﬂl)(x), for the four possible combinations of;
(pre-before-post lobe potentiating or depressiagd the sign ofA (post-before-pre lobe potentiating or depreskifthe area of the
pre-before-post lobe is normalized tol, and the area of the post-before-pre lobd.ig\rbitrary units.

postsynaptic spike and/or a “post-before-pre” lobe the pre-before-post lobe normalized 1ol . We impose no
(postsynaptic spike before presynaptic spilgach lobe will  overall normalization or€ or £, since this has no effect on
be of exponential or alpha function form, and either potenti-stability.

ating (positive) or depressindnegative. Such& and £ can We assume an excitatory PEPto obtain the stable cases
be written as follows: for the inhibitory PSP- &, simply replacel with — £ in the
stable cases fof (i.e. replaceo; with —o; and A with
EPE)(x) =xPee ¥ EH (), —A).
For both the one lobe and two lob&, there are four
El(pL)(X):O_l(o.zx)pl_e—O'ZX/TLH(O_ZX) (one lobe, possible combinations gbz and p, : exponential or alpha

function PSP with exponential or alpha function learning
rule. We will refer to these four cases as ee, ea, ae, and aa,

Py~ 91 p X AP with the first letter in the pair indicating that the PSP is
L) TpL+lX e TLH(O + TPL+1( X)P exponential or alpha function and the second letter referring
L1 L2 to the learning rule.
X eTLH(—x),  (two lobe . Thg Fourier transforr'n.s of thes_fgandﬁ_ are rational func-
HE=X) ) tions ink, and the stability condition will reduce to the re-
whereH is the Heaviside function quirement that a certain polynommlhﬁ, whose coefficients
are themselves polynomials in the parameter§ ahd £, be
1 x=0 negative for alk. Since the algebra in all cases is essentially
H(x)= the same, differing only in the size and coefficients of the

0, x<0. resulting polynomial, we present only one céaa, one lobg

in full detail and for all other cases simply list the end re-

The parameterésee Fig. 7 are as followspg,p =0 foran s

exponential or 1 for an alpha functiong, 7, L andr,_2

are positive time constants;;= +1 for a potentiating lobe A. Function PSP, one-lobew function learning rule
or —1 for a depressing lober,= +1 for a pre-before-post
lobe or—1 for a post-before-pre lobe; and for the two lobe
L, Ais the area of the post-before-pre lobe, with the area of E(x)=xe ¥ EH(x),

For
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L(X)=0o10xe 72 LH(0X),

we have
0= __TE
A= 5
2
17
LI(k)=————
f[ ]( ) (1_0'2ik7'|_)2
leading to

Re[FLLI(K) FLE(K)} = C ReL oy (1 +i 0ok )2(1—ik7e)?]

_ 22 2,4 2 2
=Coy[ o5 ek + (door TE— 057

— )k +1],

where C=7272/[(1+ o572k?)2(1+ 72k?)?]. Since C>0,

the stability condition is then

o[ o5r 2kt (4opr — oar?—1)k?+1]<0 for all k,

wherer = 7 / 7¢. The expression on the left is a quadratic in
k2. The condition is impossible for;=+1 (it fails at k
=0) but for o;=—1 more work is required. The quadratic
ax?+bx+c is negative for alk=0 if and only ifa<0 and
(b<<0 or b?—4ac<0). Applying this condition to Eq(38)

with o= —1 yields
r2—4o,r +1<0
or

(r—0,)%(r’=60,r+1)<0

For o,=—1 these give—2—3<r<-2+3 or -3
—2\2<r<-3+242, both of which are impossible be-
causer >0. For o,=+1 we get 2-/3<r<2+3 or 3
—2\2<r<3+242; the former is contained in the latter,

giving stability if and only if

0'12_1, 0'2=+1,

3—2ﬁ<%<3+2\5.
E
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E(x)

learning o
rule |

FIG. 8. Range of stable one lolkfor givené, in case aa. The
learning rule must be depressive and pre-before-post, with 3
—2\2< 7 17e<3+2y2. Stable examples are drawn with solid
lines; endpoints of the stable interval are drawn with dashed lines.
Arbitrary units.

duality these intervals must coincide; hence we must have
s;=1/s,. This is indeed the case fa;=3—22 ands,
=3+22.

The instability of theo; = +1 case for anyg andr_, by
the failure of the stability condition &=0, is just the area
sign condition.

B. Summary of Results

For the one-lobe learning rules the stable parameter
ranges are all easily calculated:

ee;: o1=—1lo,=+1, alr /e

ea: o1=—lo,=+1, 7 /<2

ae: o1=—lo,=+1, 7 /75>1/2

aa: o1=—lo,=+1, 2—\/§<TL/TE<2+ J3.

Note that in all four cases we get instability, for &|l and

Tg, If £ is not depressive and pre-before-post. Eatepres-

sive and pre-before-post, all four cases have some range of
7./ 7z in which £ is stable. The extent of that range depends
critically on the precise functional form & and £; but for

1/2< 7 Im<2 we have stability independent of the func-
tional form of £ and L.

For the two-lobe learning rules the polynomial arising out
of the stability condition has coefficients depending ®n
and on three continuous parameters; r,, and A, where
r{= 7'|_1/TE, ro= T|_2/TE. The polynomials are given in the
Appendix.

In all four caseso=+1 is always unstable. Far,;=

The only stable case is depressive and pre-before-post, with 1, the boundaries of the stable region in () for vari-

7./ 7z constrained to lie in a finite interv@Fig. 8). Note that
this interval containg /=1, whereL=—¢& (the canoni-

cally stable learning rule

Duality is also applicable here. Interchangifigand £ in
this example is equivalent to interchanging and =, and
multiplying both& and £ by —1. The multiplications offset
and we are left withr replaced by ¥/. It follows that if the
interval of stability for the pair £, £) is s;<r<s,, the cor-
responding interval for the pait(£) is s;<1/r <s,. But by

ous values ofA are plotted numerically in Fig. 9.

For one-lobe learning rules we found that only depressive
and pre-before-post permits stability. For two-lobe learning
rules, the pre-before-post lobe must be depressive for stabil-
ity, and the post-before-pre lobe cannot have #&eaaeater
than 1. This is just the area sign condition: the area of the
pre-before-post lobe is-1, and for stability when paired
with an excitatory PSE the total area under the learning
rule £ must be negative.
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FIG. 9. Boundary curves of the stable region in ¢ ,) for various values oA, for two lobe £ with o;=—1. Curves are labeled b.
Curves withA>0 are drawn with solid lines, curves with<<O with dashed lines. In all cases the region of stability is on the side of the
curve containing the diamondX) in the upper left corner of the plot. The interval of stability for the corresponding one-lobe learning rules
is the portion of the , axis in bold.

For A<1, the effect of the post-before-pre lobe shows theing one-lobe rule is stable, is an example of cooperative sta-
following general trends: in cases ee and ae, as the absolubdity.
areal|A| of the post-before-pre lobe increases, the stable re- Finally, the shape and extent of stable regions for two-
gion in the relative time constants andr, tends to shrink. lobe learning rules, or the extent of stable intervals for one-
Hence, the post-before-pre lobe can be thought of as destibe learning rules, depend critically on whetldeaind £ are
bilizing in such cases. In cases ee and ae the situation is lesgponential o function in form. This suggests that in order
clear. Increasingly negativi (larger depressive post-before- to infer even such qualitative properties as stability or insta-
pre) is uniformly destabilizing, but increasingly positive  bility in a biological context, the learning rule must be
(larger potentiating post-before-prappears to be destabiliz- known with considerable precision.
ing for smallr, but stabilizing for large . However, for particular values of some parameters the

Cooperative stability, in which a two-lobe rule is stable dependence on functional form may be such that useful con-
while each of its lobes individually would be unstable, oc-clusions can still be drawn in the absence of such precision;
curs in cases ea, ae, and aa: any pointr;) in a stable for example, the stability in one-lobe, depressive pre-before-
region, withr; outside the interval in which the correspond- post learning rules with / 7g=1, independent of whetheér
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or £ are exponential ot function in form. This particular ee:ak*+bk?+c<0 forallk,
finding has direct relevance to the learning rule observed

experimentally in mormyrid ELLL7]. The experimental data a=orra—Arr,,

are not precise enough to suggest a particular functional
form, but do indicate a one-lobe, depressive, pre-before-post
rule, with a width of the same order of magnitude as the

width of a PSP. Stability of such a rule is consistent with the

b=y (r5+r)+A(ri=ry),

analytic results derived above. c=o1t+A
VIIl. SUMMARY ea:aké+bk*+ck?®+d<0 forallk
We have investigated the existence and stability of nega- a=alr1r§(2r2— 1)—Arfr2(2rl+1),

tive image equilibria in spike-timing-dependent plasticity.
The network architecture of the neural model is based on the 3 2 3 2
known anatomy of mormyrid ELL, a cerebellum-like struc- b=0rp(r3=3riro+6ryratry) +Ary(ry—3rar;
ture that is the_ |n|.t|al site of electrosensory processing in —Bryrp+Ty),

mormyrid electric fish.

We proved that two conditions must hold for the existence
of negative image equilibria. First, the high frequency con-
tent of the Fourier transform of the repeated external input
must be less than that of the postsynaptic potential function, d=o1+A
Eg. (13). Second, the nonassociative and associative compo-
nents of the learning rule must satisfy a relative magnitude ae:ak*+bk?*+c<0 for all k
constraint, Eq(18).

. We provgd a necessary lan.d sufficient condition_for ;tabil— a= alr§(2r1— 1)—Ar§(2r2+ 1),
ity of negative image equilibria, Eq30). The condition in-
volves the Fourier transforms of the associative component
of the learning rule and the postsynaptic potential function.
We found stability to be independent of the nonassociative
component of the learning rule, independent of the form of c=o01TA

the repeated external input, and independent of the form of

the postsynaptic gain functigprovided the latter is a strictly aa:ak®+bké+ck*+dk?+e<0 forall k
increasing function of the postsynaptic potential

The general stability condition derived in this paper is
consistent with stability of the experimentally observed
spike-timing-dependent learning rule in mormyrid ELL.

c=0(2r5—r3+2r)+A(2r2—r3—2r,),

b=o(r3+2r,—1)+A(r?—2r,— 1),

a=orirs+Arirs,

b=o0(—r3—2r2r3+4rrs—rori+3rirs
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APPENDIX
- 2_ .2 2_ .2
For completeness we provide below the polynomial con- d=0y(2ry—ri+4r,— 1)+ A2ri—ry—4rp—1),
ditions for stability of the two-lobe learning rules treated in
the examples. e=o;+tA
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